3.2.90 \(\int \frac {x^2 (2+3 x^2)}{\sqrt {3+5 x^2+x^4}} \, dx\) [190]

3.2.90.1 Optimal result
3.2.90.2 Mathematica [C] (warning: unable to verify)
3.2.90.3 Rubi [A] (verified)
3.2.90.4 Maple [A] (verified)
3.2.90.5 Fricas [A] (verification not implemented)
3.2.90.6 Sympy [F]
3.2.90.7 Maxima [F]
3.2.90.8 Giac [F]
3.2.90.9 Mupad [F(-1)]

3.2.90.1 Optimal result

Integrand size = 25, antiderivative size = 270 \[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=-\frac {4 x \left (5+\sqrt {13}+2 x^2\right )}{\sqrt {3+5 x^2+x^4}}+x \sqrt {3+5 x^2+x^4}+\frac {2 \sqrt {\frac {2}{3} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {3+5 x^2+x^4}}-\frac {\sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {3+5 x^2+x^4}} \]

output
-4*x*(5+2*x^2+13^(1/2))/(x^4+5*x^2+3)^(1/2)+x*(x^4+5*x^2+3)^(1/2)-1/2*(1/( 
36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticF(x* 
(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2)) 
^(1/2))*(6+x^2*(5+13^(1/2)))*6^(1/2)/(5+13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2 
)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)+2/3*(1/(36+x^2*(30+6*1 
3^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticE(x*(30+6*13^(1/2) 
)^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2 
*(5+13^(1/2)))*(30+6*13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1 
/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)
 
3.2.90.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.23 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.82 \[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=\frac {2 x \left (3+5 x^2+x^4\right )-4 i \sqrt {2} \left (-5+\sqrt {13}\right ) \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )+i \sqrt {2} \left (-17+4 \sqrt {13}\right ) \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right ),\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )}{2 \sqrt {3+5 x^2+x^4}} \]

input
Integrate[(x^2*(2 + 3*x^2))/Sqrt[3 + 5*x^2 + x^4],x]
 
output
(2*x*(3 + 5*x^2 + x^4) - (4*I)*Sqrt[2]*(-5 + Sqrt[13])*Sqrt[(-5 + Sqrt[13] 
 - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[ 
Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6] + I*Sqrt[2]*(-17 + 4*Sqr 
t[13])*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2 
*x^2]*EllipticF[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6 
])/(2*Sqrt[3 + 5*x^2 + x^4])
 
3.2.90.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1602, 27, 1503, 1412, 1455}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (3 x^2+2\right )}{\sqrt {x^4+5 x^2+3}} \, dx\)

\(\Big \downarrow \) 1602

\(\displaystyle x \sqrt {x^4+5 x^2+3}-\frac {1}{3} \int \frac {3 \left (8 x^2+3\right )}{\sqrt {x^4+5 x^2+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle x \sqrt {x^4+5 x^2+3}-\int \frac {8 x^2+3}{\sqrt {x^4+5 x^2+3}}dx\)

\(\Big \downarrow \) 1503

\(\displaystyle -3 \int \frac {1}{\sqrt {x^4+5 x^2+3}}dx-8 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx+\sqrt {x^4+5 x^2+3} x\)

\(\Big \downarrow \) 1412

\(\displaystyle -8 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx-\frac {\sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}+\sqrt {x^4+5 x^2+3} x\)

\(\Big \downarrow \) 1455

\(\displaystyle -\frac {\sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}-8 \left (\frac {x \left (2 x^2+\sqrt {13}+5\right )}{2 \sqrt {x^4+5 x^2+3}}-\frac {\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {x^4+5 x^2+3}}\right )+\sqrt {x^4+5 x^2+3} x\)

input
Int[(x^2*(2 + 3*x^2))/Sqrt[3 + 5*x^2 + x^4],x]
 
output
x*Sqrt[3 + 5*x^2 + x^4] - 8*((x*(5 + Sqrt[13] + 2*x^2))/(2*Sqrt[3 + 5*x^2 
+ x^4]) - (Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + 
Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[1 
3])/6]*x], (-13 + 5*Sqrt[13])/6])/(2*Sqrt[3 + 5*x^2 + x^4])) - (Sqrt[3/(2* 
(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*( 
6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 
 5*Sqrt[13])/6])/Sqrt[3 + 5*x^2 + x^4]
 

3.2.90.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1412
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + 
(b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] && 
!(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1455
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b + q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q 
)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[ 
(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, 
c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1602
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 
1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3))   Int[(f*x)^(m - 2)* 
(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p 
+ 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c 
, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] | 
| IntegerQ[m])
 
3.2.90.4 Maple [A] (verified)

Time = 2.60 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.77

method result size
default \(x \sqrt {x^{4}+5 x^{2}+3}-\frac {18 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}+\frac {288 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(208\)
risch \(x \sqrt {x^{4}+5 x^{2}+3}-\frac {18 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}+\frac {288 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(208\)
elliptic \(x \sqrt {x^{4}+5 x^{2}+3}-\frac {18 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}+\frac {288 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(208\)

input
int(x^2*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x,method=_RETURNVERBOSE)
 
output
x*(x^4+5*x^2+3)^(1/2)-18/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2 
)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/ 
6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))+288/(-30+6*13^(1/2))^ 
(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/ 
(x^4+5*x^2+3)^(1/2)/(5+13^(1/2))*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5 
/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2 
)+1/6*39^(1/2)))
 
3.2.90.5 Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.45 \[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=-\frac {8 \, {\left (\sqrt {13} \sqrt {2} x - 5 \, \sqrt {2} x\right )} \sqrt {\sqrt {13} - 5} E(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {13} - 5}}{2 \, x}\right )\,|\,\frac {5}{6} \, \sqrt {13} + \frac {19}{6}) - {\left (7 \, \sqrt {13} \sqrt {2} x - 45 \, \sqrt {2} x\right )} \sqrt {\sqrt {13} - 5} F(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {13} - 5}}{2 \, x}\right )\,|\,\frac {5}{6} \, \sqrt {13} + \frac {19}{6}) - 4 \, \sqrt {x^{4} + 5 \, x^{2} + 3} {\left (x^{2} - 8\right )}}{4 \, x} \]

input
integrate(x^2*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="fricas")
 
output
-1/4*(8*(sqrt(13)*sqrt(2)*x - 5*sqrt(2)*x)*sqrt(sqrt(13) - 5)*elliptic_e(a 
rcsin(1/2*sqrt(2)*sqrt(sqrt(13) - 5)/x), 5/6*sqrt(13) + 19/6) - (7*sqrt(13 
)*sqrt(2)*x - 45*sqrt(2)*x)*sqrt(sqrt(13) - 5)*elliptic_f(arcsin(1/2*sqrt( 
2)*sqrt(sqrt(13) - 5)/x), 5/6*sqrt(13) + 19/6) - 4*sqrt(x^4 + 5*x^2 + 3)*( 
x^2 - 8))/x
 
3.2.90.6 Sympy [F]

\[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=\int \frac {x^{2} \cdot \left (3 x^{2} + 2\right )}{\sqrt {x^{4} + 5 x^{2} + 3}}\, dx \]

input
integrate(x**2*(3*x**2+2)/(x**4+5*x**2+3)**(1/2),x)
 
output
Integral(x**2*(3*x**2 + 2)/sqrt(x**4 + 5*x**2 + 3), x)
 
3.2.90.7 Maxima [F]

\[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=\int { \frac {{\left (3 \, x^{2} + 2\right )} x^{2}}{\sqrt {x^{4} + 5 \, x^{2} + 3}} \,d x } \]

input
integrate(x^2*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="maxima")
 
output
integrate((3*x^2 + 2)*x^2/sqrt(x^4 + 5*x^2 + 3), x)
 
3.2.90.8 Giac [F]

\[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=\int { \frac {{\left (3 \, x^{2} + 2\right )} x^{2}}{\sqrt {x^{4} + 5 \, x^{2} + 3}} \,d x } \]

input
integrate(x^2*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="giac")
 
output
integrate((3*x^2 + 2)*x^2/sqrt(x^4 + 5*x^2 + 3), x)
 
3.2.90.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (2+3 x^2\right )}{\sqrt {3+5 x^2+x^4}} \, dx=\int \frac {x^2\,\left (3\,x^2+2\right )}{\sqrt {x^4+5\,x^2+3}} \,d x \]

input
int((x^2*(3*x^2 + 2))/(5*x^2 + x^4 + 3)^(1/2),x)
 
output
int((x^2*(3*x^2 + 2))/(5*x^2 + x^4 + 3)^(1/2), x)